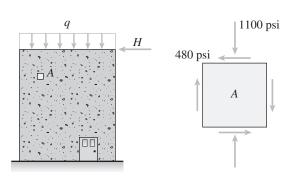
Problem 7.3-9 A shear wall in a reinforced concrete building is subjected to a vertical uniform load of intensity q and a horizontal force H, as shown in the first part of the figure. (The force H represents the effects of wind and earthquake loads.) As a consequence of these loads, the stresses at point A on the surface of the wall have the values shown in the second part of the figure (compressive stress equal to 1100 psi and shear stress equal to 480 psi).

- (a) Determine the principal stresses and show them on a sketch of a properly oriented element.
- (b) Determine the maximum shear stresses and associated normal stresses and show them on a sketch of a properly oriented element.



Solution 7.3-9 Shear wall

$$\sigma_{x} = 0$$
 $\sigma_{y} = -1100 \text{ psi}$ $\tau_{xy} = -480 \text{ psi}$

(a) PRINCIPAL STRESSES

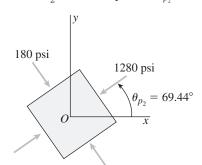
$$\tan 2\theta_{p} = \frac{2\tau_{xy}}{\sigma_{x} - \sigma_{y}} = -0.87273$$

$$2\theta_{p} = -41.11^{\circ} \text{ and } \theta_{p} = -20.56^{\circ}$$

$$2\theta_{p} = 138.89^{\circ} \text{ and } \theta_{p} = 69.44^{\circ}$$

$$\sigma_{x_{1}} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
For $2\theta_{p} = -41.11^{\circ}$: $\sigma_{x_{1}} = 180 \text{ psi}$
For $2\theta_{p} = 138.89^{\circ}$: $\sigma_{x_{1}} = -1280 \text{ psi}$
Therefore, $\sigma_{1} = 180 \text{ psi}$ and $\theta_{p_{1}} = -20.56^{\circ}$

$$\sigma_{2} = -1280 \text{ psi}$$
 and $\theta_{p_{2}} = 69.44^{\circ}$

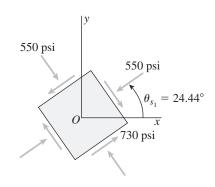


$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = 730 \text{ psi}$$

$$\theta_{s_1} = \theta_{p_1} - 45^\circ = -65.56^\circ \text{ and } \tau = 730 \text{ psi}$$

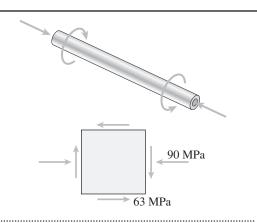
$$\theta_{s_2} = \theta_{p_1} + 45^\circ = 24.44^\circ \text{ and } \tau = -730 \text{ psi}$$

$$\sigma_{\text{aver}} = \frac{\sigma_x + \sigma_y}{2} = -550 \text{ psi}$$



Problem 7.3-10 A propeller shaft subjected to combined torsion and axial thrust is designed to resist a shear stress of 63 MPa and a compressive stress of 90 MPa (see figure).

- (a) Determine the principal stresses and show them on a sketch of a properly oriented element.
- (b) Determine the maximum shear stresses and associated normal stresses and show them on a sketch of a properly oriented element.



Solution 7.3-10 Propeller shaft

$$\sigma_{x} = -90 \text{ MPa}$$
 $\sigma_{y} = 0$ $\tau_{xy} = -63 \text{ MPa}$

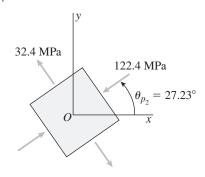
(a) PRINCIPAL STRESSES

$$\tan 2\theta_{p} = \frac{2\tau_{xy}}{\sigma_{x} - \sigma_{y}} = 1.4000$$

$$2\theta_{p} = 54.46^{\circ} \quad \text{and} \quad \theta_{p} = 27.23^{\circ}$$

$$2\theta_{p} = 234.46^{\circ} \quad \text{and} \quad \theta_{p} = 117.23^{\circ}$$

$$\sigma_{x_{1}} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
For $2\theta_{p} = 54.46^{\circ}$: $\sigma_{x_{1}} = -122.4 \text{ MPa}$
For $2\theta_{p} = 234.46^{\circ}$: $\sigma_{x_{1}} = 32.4 \text{ MPa}$



Therefore,

$$\sigma_1 = 32.4 \text{ MPa and } \theta_{p_1} = 117.23^{\circ}$$

 $\sigma_2 = -122.4 \text{ MPa and } \theta_{p_2} = 27.23^{\circ}$

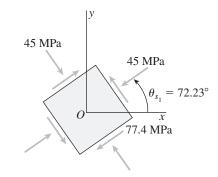
(b) MAXIMUM SHEAR STRESSES

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = 77.4 \text{ MPa}$$

$$\theta_{s_1} = \theta_{p_1} - 45^\circ = 72.23^\circ \text{ and } \tau = 77.4 \text{ MPa}$$

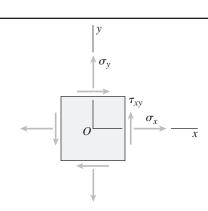
$$\theta_{s_2} = \theta_{p_1} + 45^\circ = 162.23^\circ \text{ and } \tau = -77.4 \text{ MPa}$$

$$\sigma_{\text{aver}} = \frac{\sigma_x + \sigma_y}{2} = -45 \text{ MPa}$$



Problems 7.3-11 through 7.3-16 An element in *plane stress* (see figure) is subjected to stresses σ_x , σ_y , and τ_{xy} .

- (a) Determine the principal stresses and show them on a sketch of a properly oriented element.
- (b) Determine the maximum shear stresses and associated normal stresses and show them on a sketch of a properly oriented element.



Data for 7.3-11
$$\sigma_x = 3500 \; \mathrm{psi}, \, \sigma_y = 1120 \; \mathrm{psi}, \, \tau_{xy} = -1200 \; \mathrm{psi}$$

Solution 7.3-11 Plane stress

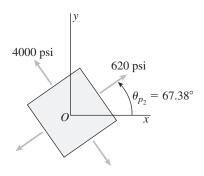
$$\sigma_{_{\! X}}=3500~{
m psi}$$
 $\sigma_{_{\! Y}}=1120~{
m psi}$ $au_{_{\! X\! Y}}=-1200~{
m psi}$

(a) PRINCIPAL STRESSES

$$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} = -1.0084$$
 $2\theta_p = -45.24^\circ \text{ and } \theta_p = -22.62^\circ$
 $2\theta_p = 134.76^\circ \text{ and } \theta_p = 67.38^\circ$
 $\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$
For $2\theta_p = -45.24^\circ$: $\sigma_x = 4000 \text{ psi}$

For
$$2\theta_p = -45.24^\circ$$
: $\sigma_{x_1} = 4000 \text{ psi}$
For $2\theta_p = 134.76^\circ$: $\sigma_{x_1} = 620 \text{ psi}$

$$\sigma_1 = 4000 \text{ psi and } \theta_{p_1} = -22.62^{\circ}$$
 $\sigma_2 = 620 \text{ psi and } \theta_{p_2} = 67.38^{\circ}$



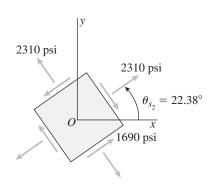
(b) MAXIMUM SHEAR STRESSES

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = 1690 \text{ psi}$$

$$\theta_{s_1} = \theta_{p_1} - 45^\circ = -67.62^\circ \text{ and } \tau = 1690 \text{ psi}$$

$$\theta_{s_2} = \theta_{p_1} + 45^\circ = 22.38^\circ \text{ and } \tau = -1690 \text{ psi}$$

$$\sigma_{\text{aver}} = \frac{\sigma_x + \sigma_y}{2} = 2310 \text{ psi}$$



Data for 7.3-12
$$\sigma_{x}=2100~\mathrm{kPa},\,\sigma_{y}=300~\mathrm{kPa},\,\tau_{xy}=-560~\mathrm{kPa}$$

Solution 7.3-12 Plane stress

$$\sigma_{_{\! X}} = 2100 \text{ kPa}$$
 $\sigma_{_{\! Y}} = 300 \text{ kPa}$ $\tau_{_{\! X\! Y}} = -560 \text{ kPa}$

(a) PRINCIPAL STRESSES

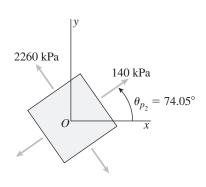
$$\tan 2\theta_{p} = \frac{2\tau_{xy}}{\sigma_{x} - \sigma_{y}} = -0.6222$$

$$2\theta_{p} = -31.89^{\circ} \quad \text{and} \quad \theta_{p} = -15.95^{\circ}$$

$$2\theta_{p} = 148.11^{\circ} \quad \text{and} \quad \theta_{p} = 74.05^{\circ}$$

$$\sigma_{x_{1}} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
For $2\theta_{p} = -31.89^{\circ}$: $\sigma_{x_{1}} = 2260 \text{ kPa}$
For $2\theta_{p} = 148.11^{\circ}$: $\sigma_{x_{1}} = 140 \text{ kPa}$
Therefore, $\sigma_{1} = 2260 \text{ kPa}$ and $\theta_{p_{1}} = -15.95^{\circ}$

$$\sigma_{2} = 140 \text{ kPa} \text{ and } \theta_{p_{2}} = 74.05^{\circ}$$

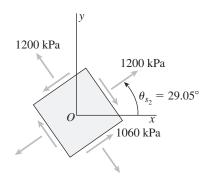


$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = 1060 \text{ kPa}$$

$$\theta_{s_1} = \theta_{p_1} - 45^\circ = -60.95^\circ \text{ and } \tau = 1060 \text{ kPa}$$

$$\theta_{s_2} = \theta_{p_1} + 45^\circ = 29.05^\circ \text{ and } \tau = -1060 \text{ kPa}$$

$$\sigma_{\text{aver}} = \frac{\sigma_x + \sigma_y}{2} = 1200 \text{ kPa}$$



Data for 7.3-13 $\sigma_x = 15{,}000 \text{ psi}, \ \sigma_y = 1{,}000 \text{ psi}, \ \tau_{xy} = 2{,}400 \text{ psi}$

Solution 7.3-13 Plane stress

$$\sigma_{_{\! X}}=$$
 15,000 psi $~\sigma_{_{\! Y}}=$ 1,000 psi $~\tau_{_{\! X\! Y\! }}=$ 2,400 psi

(a) PRINCIPAL STRESSES

$$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} = 0.34286$$

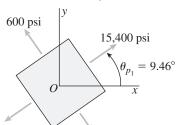
$$2\theta_p=18.92^\circ$$
 and $\theta_p=9.46^\circ$ $2\theta_p=198.92^\circ$ and $\theta_p=99.46^\circ$

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

For
$$2\theta_p = 18.92^\circ$$
: $\sigma_{x_1} = 15,400 \text{ psi}$

For
$$2\theta_p = 198.92^\circ$$
: $\sigma_{x_1} = 600 \text{ psi}$

Therefore,
$$\sigma_1 = 15,400$$
 psi and $\theta_{p_1} = 9.46^{\circ}$ $\sigma_2 = 600$ psi and $\theta_{p_2} = 99.96^{\circ}$



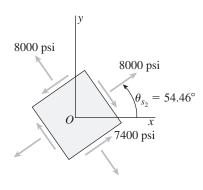
(b) MAXIMUM SHEAR STRESSES

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = 7,400 \text{ psi}$$

$$\theta_{s_1} = \theta_{p_1} - 45^\circ = -35.54^\circ \text{ and } \tau = 7,400 \text{ psi}$$

$$\theta_{s_2} = \theta_{p_1} + 45^\circ = 54.46^\circ \text{ and } \tau = -7,400 \text{ psi}$$

$$\sigma_{\text{aver}} = \frac{\sigma_x + \sigma_y}{2} = 8,000 \text{ psi}$$



Data for 7.3-14 $\sigma_x = 16$ MPa, $\sigma_y = -96$ MPa, $\tau_{xy} = -42$ MPa

Solution 7.3-14 Plane stress

$$\sigma_{x} = 16 \text{ MPa}$$
 $\sigma_{y} = -96 \text{ MPa}$ $\tau_{xy} = -42 \text{ MPa}$

(a) PRINCIPAL STRESSES

$$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} = -0.7500$$

$$\begin{array}{lll} 2\theta_p = -36.87^\circ & \text{and} & \theta_p = -18.43^\circ \\ 2\theta_p = 143.13^\circ & \text{and} & \theta_p = 71.57^\circ \end{array}$$

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

For
$$2\theta_p = -36.87^\circ$$
: $\sigma_{x_1} = 30 \text{ MPa}$

For
$$2\theta_p = 143.13^\circ$$
: $\sigma_{x_1} = -110 \text{ MPa}$

Therefore,
$$\sigma_1 = 30$$
 MPa and $\theta_{p_1} = -18.43^\circ$

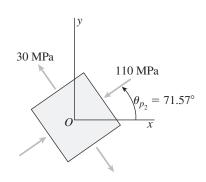
$$\sigma_2 = -110$$
 MPa and $\theta_{p_2} = 71.57^\circ$

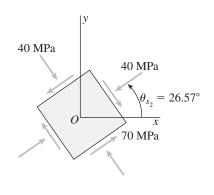
$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = 70 \text{ MPa}$$

$$\theta_{s_1} = \theta_{p_1} - 45^\circ = -63.43^\circ \text{ and } \tau = 70 \text{ MPa}$$

$$\theta_{s_2} = \theta_{p_1} + 45^\circ = 26.57^\circ \text{ and } \tau = -70 \text{ MPa}$$

$$\sigma_{\text{aver}} = \frac{\sigma_x + \sigma_y}{2} = -40 \text{ MPa}$$





Data for 7.3-15 $\sigma_x = -3000 \text{ psi}, \ \sigma_y = -12,000 \text{ psi}, \ \tau_{xy} = 6000 \text{ psi}$

Solution 7.3-15 Plane stress

$$\sigma_{_X} = -3000 \text{ psi}$$
 $\sigma_{_Y} = -12,000 \text{ psi}$ $\tau_{_{XY}} = 6000 \text{ psi}$

(a) PRINCIPAL STRESSES

$$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} = 1.3333$$

$$2\theta_p = 53.13^\circ \text{ and } \theta_p = 26.57^\circ$$

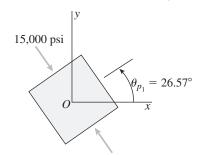
$$2\theta_p = 233.13^\circ \text{ and } \theta_p = 116.57^\circ$$

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

For
$$2\theta_p = 53.13^\circ$$
: $\sigma_{x_1} = 0$
For $2\theta_p = 233.13^\circ$: $\sigma_{x_1} = -15,000$ psi

$$\sigma_1 = 0 \text{ and } \theta_{p_1} = 26.57^{\circ}$$

 $\sigma_2 = -15,000 \text{ psi and } \theta_{p_2} = 116.57^{\circ}$



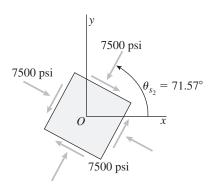
(b) Maximum shear stresses

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = 7500 \text{ psi}$$

$$\theta_{s_1} = \theta_{p_1} - 45^\circ = -18.43^\circ \text{ and } \tau = 7500 \text{ psi}$$

$$\theta_{s_2} = \theta_{p_1} + 45^\circ = 71.57^\circ \text{ and } \tau = -7500 \text{ psi}$$

$$\sigma_{\text{aver}} = \frac{\sigma_x + \sigma_y}{2} = -7500 \text{ psi}$$



Data for 7.3-16
$$\sigma_x = -100 \text{ MPa}, \sigma_y = 50 \text{ MPa}, \tau_{xy} = -50 \text{ MPa}$$

Solution 7.3-16 Plane stress

$$\sigma_x = -100 \text{ MPa}$$
 $\sigma_y = 50 \text{ MPa}$ $\tau_{xy} = -50 \text{ MPa}$

(a) PRINCIPAL STRESSES

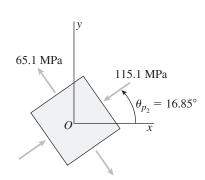
$$\tan 2\theta_{p} = \frac{2\tau_{xy}}{\sigma_{x} - \sigma_{y}} = 0.66667$$

$$2\theta_{p} = 33.69^{\circ} \text{ and } \theta_{p} = 16.85^{\circ}$$

$$2\theta_{p} = 213.69^{\circ} \text{ and } \theta_{p} = 106.85^{\circ}$$

$$\sigma_{x_{1}} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
For $2\theta_{p} = 33.69^{\circ}$: $\sigma_{x_{1}} = -115.1 \text{ MPa}$
For $2\theta_{p} = 213.69^{\circ}$: $\sigma_{x_{1}} = 65.1 \text{ MPa}$
Therefore,
$$\sigma_{1} = 65.1 \text{ MPa and } \theta_{p_{1}} = 106.85^{\circ}$$

$$\sigma_{2} = -115.1 \text{ MPa and } \theta_{p_{2}} = 16.85^{\circ}$$



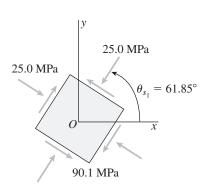
(b) MAXIMUM SHEAR STRESSES

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = 90.1 \text{ MPa}$$

$$\theta_{s_1} = \theta_{p_1} - 45^\circ = 61.85^\circ \text{ and } \tau = 90.1 \text{ MPa}$$

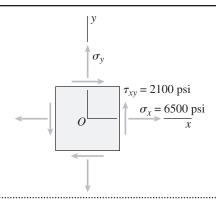
$$\theta_{s_2} = \theta_{p_1} + 45^\circ = 151.85^\circ \text{ and } \tau = -90.1 \text{ MPa}$$

$$\sigma_{\text{aver}} = \frac{\sigma_x + \sigma_y}{2} = -25.0 \text{ MPa}$$



Problem 7.3-17 At a point on the surface of a machine component the stresses acting on the x face of a stress element are $\sigma_x = 6500$ psi and $\tau_{xy} = 2100$ psi (see figure).

What is the allowable range of values for the stress σ_y if the maximum shear stress is limited to $\tau_0 = 2900$ psi?



Solution 7.3-17 Allowable range of values

 $\sigma_x = 6500 \text{ psi}$ $\tau_{xy} = 2100 \text{ psi}$ $\sigma_y = ?$ Find the allowable range of values for σ_y if the maximum allowable shear stresses is $\tau_0 = 2900 \text{ psi}$.

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$
 Eq. (1)

or

$$\tau_{\text{max}}^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2$$
 Eq. (2)

Solve for $\sigma_{_{\mathrm{v}}}$

$$\sigma_{\rm v} = \sigma_{\rm x} \pm 2\sqrt{\tau_{\rm max}^2 - \tau_{\rm xv}^2}$$

Substitute numerical values:

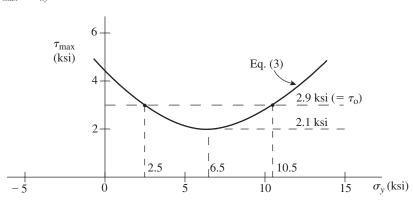
$$\sigma_y = 6500 \text{ psi } \pm 2\sqrt{(2900 \text{ psi})^2 - (2100 \text{ psi})^2}$$

= 6500 psi ± 4000 psi
Therefore, 2500 psi ≤ $\sigma_y \le 10,500 \text{ psi}$ ←

Graph of $au_{ ext{max}}$

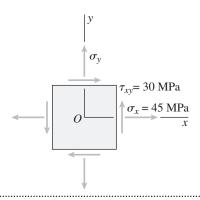
From Eq. (1):

$$\tau_{\text{max}} = \sqrt{\left(\frac{6500 - \sigma_{y}}{2}\right)^{2} + (2100)^{2}}$$
 Eq. (3)



Problem 7.3-18 At a point on the surface of a machine component the stresses acting on the x face of a stress element are $\sigma_x = 45$ MPa and $\tau_{xy} = 30$ MPa (see figure).

What is the allowable range of values for the stress σ_y if the maximum shear stress is limited to $\tau_0 = 34$ MPa?



Solution 7.3-18 Allowable range of values

 $\sigma_x = 45 \text{ MPa}$ $\tau_{xy} = 30 \text{ MPa}$ $\sigma_y = ?$ Find the allowable range of values for σ_y if the maximum allowable shear stresses is $\tau_0 = 34 \text{ MPa}$.

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 Eq. (1)

or

$$\tau_{\text{max}}^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2$$
 Eq. (2)

Solve for $\sigma_{_{_{\mathrm{V}}}}$

$$\sigma_{\rm v} = \sigma_{\rm x} \pm 2\sqrt{\tau_{\rm max}^2 - \tau_{\rm xv}^2}$$

Substitute numerical values:

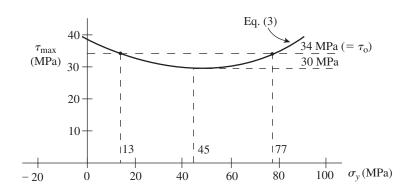
$$\sigma_y = 45 \text{ MPa} \pm 2\sqrt{(34 \text{ MPa})^2 - (30 \text{ MPa})^2}$$

= 45 MPa ± 32 MPa
Therefore, 13 MPa $\leq \sigma_y \leq$ 77 MPa

Graph of $au_{ ext{max}}$

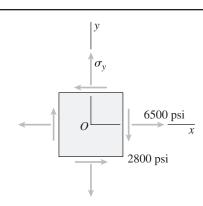
From Eq. (1):

$$\tau_{\text{max}} = \sqrt{\left(\frac{45 - \sigma_y}{2}\right)^2 + (30)^2}$$
 Eq. (3)



Problem 7.3-19 An element in *plane stress* is subjected to stresses $\sigma_x = 6500$ psi and $\tau_{xy} = -2800$ psi (see figure). It is known that one of the principal stresses equals 7300 psi in tension.

- (a) Determine the stress σ_{v} .
- (b) Determine the other principal stress and the orientation of the principal planes; then show the principal stresses on a sketch of a properly oriented element.



Solution 7.3-19 Plane stress

$$\sigma_x = 6500 \text{ psi}$$
 $\tau_{xy} = -2800 \text{ psi}$ $\sigma_y = ?$
One principal stress = 7300 psi (tension)

(a) Stress σ_{y}

Because σ_x is smaller than the given principal stress, we know that the given stress is the larger principal stress

$$\sigma_1 = 7300 \text{ psi}$$

$$\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Substitute numerical values and solve for σ_y :

$$\sigma_{\rm v} = -2500 \, \mathrm{psi}$$

(b) PRINCIPAL STRESSES

$$\tan 2\theta_{p} = \frac{2\tau_{xy}}{\sigma_{x} - \sigma_{y}} = -0.62222$$

$$2\theta_{p} = -31.891^{\circ} \text{ and } \theta_{p} = -15.945^{\circ}$$

$$2\theta_{p} = 148.109^{\circ} \text{ and } \theta_{p} = 74.053^{\circ}$$

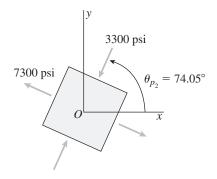
$$\sigma_{x_{1}} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

For
$$2\theta_p = -31.891^\circ$$
: $\sigma_{x_1} = 7300 \text{ psi}$
For $2\theta_p = 148.109^\circ$: $\sigma_{x_1} = -3300 \text{ psi}$

Therefore,

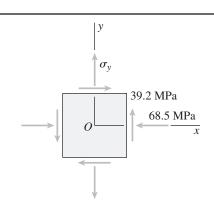
$$\sigma_1 = 7300 \text{ psi and } \theta_{p_1} = -15.95^{\circ}$$

 $\sigma_2 = -3300 \text{ psi and } \theta_{p_2} = 74.05^{\circ}$



Problem 7.3-20 An element in *plane stress* is subjected to stresses $\sigma_x = -68.5$ MPa and $\tau_{xy} = 39.2$ MPa (see figure). It is known that one of the principal stresses equals 26.3 MPa in tension.

- (a) Determine the stress σ_{v} .
- (b) Determine the other principal stress and the orientation of the principal planes; then show the principal stresses on a sketch of a properly oriented element.



Solution 7.3-20 Plane stress

$$\sigma_x = -68.5 \text{ MPa}$$
 $\tau_{xy} = 39.2 \text{ MPa}$ $\sigma_y = ?$
One principal stress = 26.3 MPa (tension)

(a) Stress σ_{y}

Because σ_x is smaller than the given principal stress, we know that the given stress is the larger principal stress.

$$\sigma_1 = 26.3 \text{ MPa}$$

$$\sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Substitute numerical values and solve for σ_y : $\sigma_y = 10.1 \text{ MPa}$

447

(b) Principal stresses

$$\tan 2\theta_{p} = \frac{2\tau_{xy}}{\sigma_{x} - \sigma_{y}} = -0.99746$$

$$2\theta_{p} = -44.93^{\circ} \text{ and } \theta_{p} = -22.46^{\circ}$$

$$2\theta_{p} = 135.07^{\circ} \text{ and } \theta_{p} = 67.54^{\circ}$$

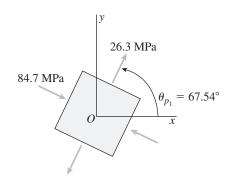
$$\sigma_{x_{1}} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

For
$$2\theta_p = -44.93^\circ$$
: $\sigma_{x_1} = -84.7 \text{ MPa}$
For $2\theta_p = 135.07^\circ$: $\sigma_{x_1} = 26.3 \text{ MPa}$

Therefore.

$$\sigma_1 = 26.3 \text{ MPa and } \theta_{p_1} = 67.54^{\circ}$$

 $\sigma_2 = -84.7 \text{ MPa and } \theta_{p_2} = -22.46^{\circ}$

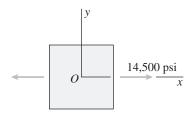


Mohr's Circles

The problems for Section 7.4 are to be solved using Mohr's circle. Consider only the in-plane stresses (the stresses in the xy plane).

Problem 7.4-1 An element in *uniaxial stress* is subjected to tensile stresses $\sigma_x = 14,500$ psi, as shown in the figure.

Using Mohr's circle, determine (a) the stresses acting on an element oriented at a counterclockwise angle $\theta = 24^{\circ}$ from the *x* axis and (b) the maximum shear stresses and associated normal stresses. Show all results on sketches of properly oriented elements.



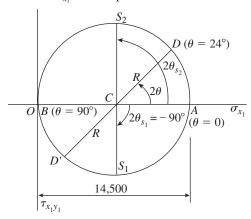
Solution 7.4-1 Uniaxial stress

$$\sigma_x = 14,500 \text{ psi}$$
 $\sigma_y = 0$ $\tau_{xy} = 0$

(a) ELEMENT AT
$$\theta = 24^{\circ}$$
 (All stresses in psi)

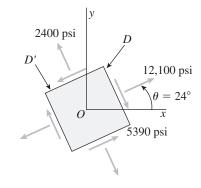
$$2\theta = 48^{\circ}$$
 $\theta = 24^{\circ}$ $R = 7250 \text{ psi}$

Point *C*: $\sigma_{x_1} = 7250$ psi



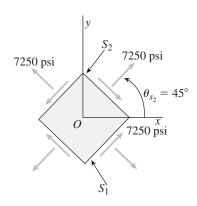
Point *D*:
$$\sigma_{x_1} = R + R \cos 2\theta = 12,100 \text{ psi}$$

 $\tau_{x_1 y_1} = R \sin 2\theta = -5390 \text{ psi}$
Point *D'*: $\sigma_{x_1} = R - R \cos 2\theta = 2400 \text{ psi}$
 $\tau_{x_1 y_1} = 5390 \text{ psi}$



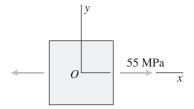
(b) MAXIMUM SHEAR STRESSES

Point
$$S_1$$
: $2\theta_{s_1} = -90^{\circ}$ $\theta_{s_1} = -45^{\circ}$ $\tau_{\max} = R = 7250 \text{ psi}$
Point S_2 : $2\theta_{s_2} = 90^{\circ}$ $\theta_{s_2} = 45^{\circ}$ $\tau_{\min} = -R = -7250 \text{ psi}$ $\sigma_{\text{aver}} = R = 7250 \text{ psi}$



Problem 7.4-2 An element in *uniaxial stress* is subjected to tensile stresses $\sigma_x = 55$ MPa, as shown in the figure.

Using Mohr's circle, determine (a) the stresses acting on an element oriented at an angle $\theta = -30^{\circ}$ from the *x* axis (minus means clockwise) and (b) the maximum shear stresses and associated normal stresses. Show all results on sketches of properly oriented elements.

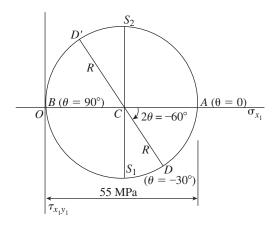


Solution 7.4-2 Uniaxial stress

$$\sigma_{x} = 55 \text{ MPa}$$
 $\sigma_{y} = 0$ $\tau_{xy} = 0$

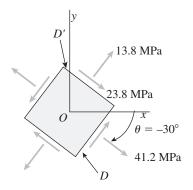
(a) ELEMENT AT $\theta = -30^{\circ}$ (All stresses in MPa)

$$2\theta = -60^{\circ}$$
 $\theta = -30^{\circ}$ $R = 27.5 \text{ MPa}$
Point $C: \sigma_{x_1} = 27.5 \text{ MPa}$

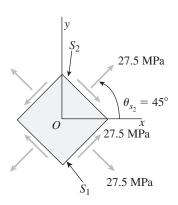


Point D:
$$\sigma_{x_1} = R + R \cos |2\theta|$$

 $= R(1 + \cos 60^\circ) = 41.2 \text{ MPa}$
 $\tau_{x_1y_1} = R \sin |2\theta| = R \sin 60^\circ = 23.8 \text{ MPa}$
Point D': $\sigma_{x_1} = R - R \cos |2\theta| = 13.8 \text{ MPa}$
 $\tau_{x_1y_1} = -R \sin |2\theta| = -23.8 \text{ MPa}$

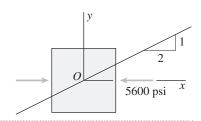


Point
$$S_1$$
: $2\theta_{s_1} = -90^{\circ}$ $\theta_{s_1} = -45^{\circ}$ $\tau_{\max} = R = 27.5 \text{ MPa}$
Point S_2 : $2\theta_{s_2} = 90^{\circ}$ $\theta_{s_2} = 45^{\circ}$ $\tau_{\min} = -R = -27.5 \text{ MPa}$ $\sigma_{\text{aver}} = R = 27.5 \text{ MPa}$



Problem 7.4-3 An element in *uniaxial stress* is subjected to compressive stresses of magnitude 5600 psi, as shown in the figure.

Using Mohr's circle, determine (a) the stresses acting on an element oriented at a slope of 1 on 2 (see figure) and (b) the maximum shear stresses and associated normal stresses. Show all results on sketches of properly oriented elements.

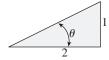


Solution 7.4-3 Uniaxial stress

$$\sigma_{x} = -5600 \text{ psi}$$
 $\sigma_{y} = 0$ $\tau_{xy} = 0$

(a) Element at a slope of 1 on 2

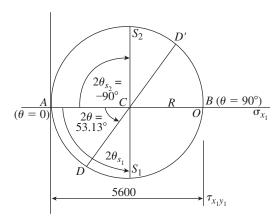
(All stresses in psi)
$$\theta = \arctan \frac{1}{2} = 26.565^{\circ}$$



$$2\theta = 53.130^{\circ}$$

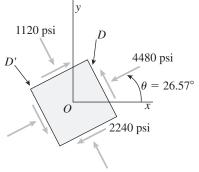
 $\theta = 26.57^{\circ}$
 $R = 2800 \text{ psi}$

Point
$$C: \sigma_{x_1} = -2800 \text{ psi}$$



Point *D*:
$$\sigma_{x_1} = -R - R \cos 2\theta = -4480 \text{ psi}$$

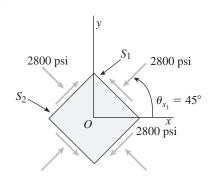
 $\tau_{x_1 y_1} = R \sin 2\theta = 2240 \text{ psi}$
Point *D'*: $\sigma_{x_1} = -R + R \cos 2\theta = -1120 \text{ psi}$
 $\tau_{x_1 y_1} = -R \sin 2\theta = -2240 \text{ psi}$



(b) MAXIMUM SHEAR STRESSES

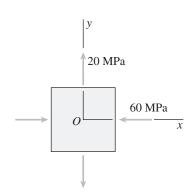
Point
$$S_1$$
: $2\theta_{s_1} = 90^{\circ}$ $\theta_{s_1} = 45^{\circ}$ $\tau_{\text{max}} = R = 2800 \text{ psi}$

Point S_2 : $2\theta_{s_2} = -90^{\circ}$ $\theta_{s_2} = -45^{\circ}$ $\tau_{\text{min}} = -R = -2800 \text{ psi}$ $\sigma_{\text{aver}} = -R = -2800 \text{ psi}$



Problem 7.4-4 An element in *biaxial stress* is subjected to stresses $\sigma_x = -60$ MPa and $\sigma_y = 20$ MPa, as shown in the figure.

Using Mohr's circle, determine (a) the stresses acting on an element oriented at a counterclockwise angle $\theta = 22.5^{\circ}$ from the *x* axis and (b) the maximum shear stresses and associated normal stresses. Show all results on sketches of properly oriented elements.



Solution 7.4-4 Biaxial stress

$$\sigma_{x} = -60 \text{ MPa}$$
 $\sigma_{y} = 20 \text{ MPa}$ $\tau_{xy} = 0$

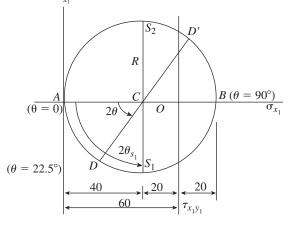
(a) Element at $\theta = 22.5^{\circ}$

(All stresses in MPa)

$$2\theta = 45^{\circ}$$
 $\theta = 22.5^{\circ}$

$$2R = 60 + 20 = 80 \text{ MPa}$$
 $R = 40 \text{ MPa}$

Point C: $\sigma_{x_1} = -20 \text{ MPa}$

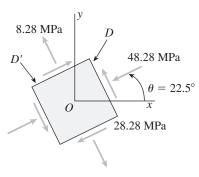


Point *D*:
$$\sigma_{x_1} = -20 - R \cos 2\theta = -48.28 \text{ MPa}$$

$$\tau_{x_1y_1} = R \sin 2\theta = 28.28 \text{ MPa}$$

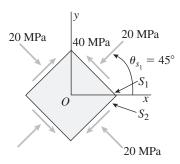
Point
$$D'$$
: $\sigma_{x_1} = R \cos 2\theta - 20 = 8.28 \text{ MPa}$

$$\tau_{x_1y_1} = -R \sin 2\theta = -28.28 \text{ MPa}$$



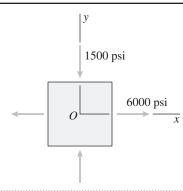
(b) MAXIMUM SHEAR STRESSES

Point
$$S_1$$
: $2\theta_{s_1} = 90^{\circ}$ $\theta_{s_1} = 45^{\circ}$
 $\tau_{\text{max}} = R = 40 \text{ MPa}$
Point S_2 : $2\theta_{s_2} = -90^{\circ}$ $\theta_{s_2} = -45^{\circ}$
 $\tau_{\text{min}} = -R = -40 \text{ MPa}$
 $\sigma_{\text{aver}} = -20 \text{ MPa}$



Problem 7.4-5 An element in *biaxial stress* is subjected to stresses $\sigma_x = 6000$ psi and $\sigma_y = -1500$ psi, as shown in the figure.

Using Mohr's circle, determine (a) the stresses acting on an element oriented at a counterclockwise angle $\theta = 60^{\circ}$ from the x axis and (b) the maximum shear stresses and associated normal stresses. Show all results on sketches of properly oriented elements.



Solution 7.4-5 Biaxial stress

$$\sigma_x = 6000 \text{ psi}$$
 $\sigma_y = -1500 \text{ psi}$ $\tau_{xy} = 0$

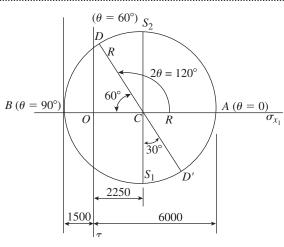
(a) Element at $\theta = 60^{\circ}$

(All stresses in psi)

$$2\theta = 120^{\circ}$$
 $\theta = 60^{\circ}$

$$2R = 7500 \text{ psi}$$
 $R = 3750 \text{ psi}$

Point *C*: $\sigma_{x_1} = 2250 \text{ psi}$



Point *D*:
$$\sigma_{x_1} = 2250 - R \cos 60^\circ = 375 \text{ psi}$$

 $\tau_{x_1 y_1} = -R \sin 60^\circ = -3248 \text{ psi}$
Point *D'*: $\sigma_{x_1} = 2250 + R \cos 60^\circ = 4125 \text{ psi}$
 $\tau_{x_1 y_1} = R \sin 60^\circ = 3248 \text{ psi}$

4125 psi
$$O = 60^{\circ}$$

$$3250 \text{ psi}$$

(b) Maximum shear stresses

Point
$$S_1$$
: $2\theta_{s_1} = -90^{\circ}$ $\theta_{s_1} = -45^{\circ}$
 $\tau_{\text{max}} = R = 3750 \text{ psi}$
Point S_2 : $2\theta_{s_2} = 90^{\circ}$ $\theta_{s_2} = 45^{\circ}$
 $\tau_{\text{min}} = -R = -3750 \text{ psi}$
 $\sigma_{\text{aver}} = 2250 \text{ psi}$

$$2250 \text{ psi}$$

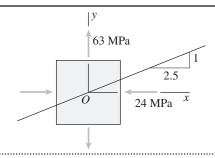
$$2250 \text{ psi}$$

$$\theta_{s_2} = 45^{\circ}$$

$$3750 \text{ psi}$$

Problem 7.4-6 An element in *biaxial stress* is subjected to stresses $\sigma_x = -24$ MPa and $\sigma_y = 63$ MPa, as shown in the figure.

Using Mohr's circle, determine (a) the stresses acting on an element oriented at a slope of 1 on 2.5 (see figure) and (b) the maximum shear stresses and associated normal stresses. Show all results on sketches of properly oriented elements.

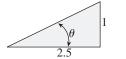


Solution 7.4-6 Biaxial stress

$$\sigma_x = -24 \text{ MPa}$$
 $\sigma_y = 63 \text{ MPa}$ $\tau_{xy} = 0$

(a) Element at a slope of 1 on 2.5

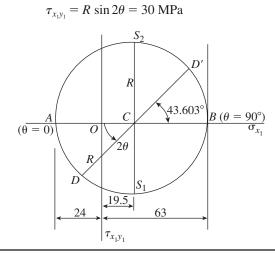
(All stresses in MPa) $\theta = \arctan \frac{1}{2.5} = 21.801^{\circ}$



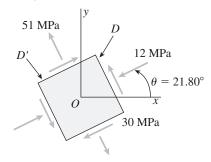
$$2\theta = 43.603^{\circ}$$

 $\theta = 21.801^{\circ}$
 $2R = 87 \text{ MPa}$
 $R = 43.5 \text{ MPa}$

Point C:
$$\sigma_{x_1} = 19.5$$
 MPa
Point D: $\sigma_{x_1} = -R \cos 2\theta + 19.5 = -12$ MPa



Point
$$D'$$
: $\sigma_{x_1} = 19.5 + R \cos 2\theta = 51 \text{ MPa}$
 $\tau_{x_1 y_1} = -R \sin 2\theta = -30 \text{ MPa}$



Point
$$S_1$$
: $2\theta_{s_1} = 90^{\circ}$ $\theta_{s_1} = 45^{\circ}$
 $\tau_{\text{max}} = R = 43.5 \text{ MPa}$
Point S_2 : $2\theta_{s_2} = -90^{\circ}$ $\theta_{s_2} = -45^{\circ}$
 $\tau_{\text{min}} = -R = -43.5 \text{ MPa}$
 $\sigma_{\text{aver}} = 19.5 \text{ MPa}$

